J an 2 00 0 EIGENVALUES , INVARIANT FACTORS , HIGHEST WEIGHTS , AND SCHUBERT CALCULUS

نویسنده

  • WILLIAM FULTON
چکیده

We describe recent work of Klyachko, Totaro, Knutson, and Tao, that characterizes eigenvalues of sums of Hermitian matrices, and decomposition of tensor products of representations of GLn(C). We explain related applications to invariant factors of products of matrices, intersections in Grassmann varieties, and singular values of sums and products of arbitrary matrices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

m at h . A G ] 2 A ug 1 99 9 EIGENVALUES , INVARIANT FACTORS , HIGHEST WEIGHTS , AND SCHUBERT CALCULUS

We describe recent work of Klyachko, Totaro, Knutson, and Tao, that characterizes eigenvalues of sums of Hermitian matrices, and decomposition of tensor products of representations of GLn(C). We explain related applications to invariant factors of products of matrices, intersections in Grassmann varieties, and singular values of sums and products of arbitrary matrices.

متن کامل

GLn(C ) TENSOR PRODUCTS II: PUZZLES DETERMINE FACETS OF THE LITTLEWOOD-RICHARDSON CONE

The set of possible spectra ( ; ; ) of zero-sum triples of Hermitian matrices forms a polyhedral cone [H], whose facets have been already studied in [Kl, HR, T, Be] in terms of Schubert calculus on Grassmannians. We give a complete determination of these facets; there is one for each triple of Grassmannian Schubert cycles intersecting in a unique point. In particular, the list of inequalities d...

متن کامل

Eigenvalues, Invariant Factors, Highest Weights, and Schubert Calculus

We describe recent work of Klyachko, Totaro, Knutson, and Tao that characterizes eigenvalues of sums of Hermitian matrices and decomposition of tensor products of representations of GLn(C). We explain related applications to invariant factors of products of matrices, intersections in Grassmann varieties, and singular values of sums and products of arbitrary matrices. Recent breakthroughs, prima...

متن کامل

THE HONEYCOMB MODEL OF GLn(C) TENSOR PRODUCTS II: PUZZLES DETERMINE FACETS OF THE LITTLEWOOD-RICHARDSON CONE

The set of possible spectra (λ, μ, ν) of zero-sum triples of Hermitian matrices forms a polyhedral cone [H], whose facets have been already studied in [Kl, HR, T, Be] in terms of Schubert calculus on Grassmannians. We give a complete determination of these facets; there is one for each triple of Grassmannian Schubert cycles intersecting in a unique point. In particular, the list of inequalities...

متن کامل

Apiary Views of the Berenstein-zelevinsky Polytope, and Klyachko’s Saturation Conjecture

Recently Klyachko [K] has given linear inequalities on triples (λ, μ, ν) of dominant weights of GLn(C) necessary for the the corresponding Littlewood-Richardson coefficient dim(Vλ⊗Vμ⊗Vν) GLn(C) to be positive. We show that these conditions (and an evident congruency condition) are also sufficient, which was known as the saturation conjecture. In particular this proves Horn’s conjecture, giving ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008